“Like walking through an open cemetery”

“I have been working in human-modified tropical forests for the past 14 years, but seeing these fires first hand was devastating,” wrote Erika responding to one of my questions “The smell of wet soil was gone and I could only smell smoke…even the usual cacophony of forest sounds disappeared…it was like walking through an open cemetery.”

Erika de Berengeur Cesar, an up and coming Brazilian forest researcher, works at Lancaster University. For last two months, she has been slogging away in the field collecting data for her team’s project on human-modified forests. But this year hasn’t gone to plan. This isn’t a case of bad planning though, as with so may projects – 7 of her 20 sites had burned in some of the most widespread fires in recent times. After seeing her tweeting about this, I thought “I need to write something about this. It feels important.” So we fired a few tweets and emails back and forth, with Erika fitting answering my questions between her days in the field. After I had waited impatiently for a couple of days, Erika messaged me:

“Sorry, trying not to work weekends…not going very well though…Today I just learned that 9 of my 20 plots have burned.” 2 more plots. Aside from the wider situation, this was the stuff of researcher’s nightmares.

B260 T5 - Before and after the fire.1
Erika de Berengeur Cesar in one of her logged plots before it burned (top) and the same plot after recent fires (bottom). Photo courtesy of Erika.

Fires in Brazil reached record levels in 2015, with more than a quarter of a million separate fires recorded. However, these fires are not generally ‘natural’ – “Fires in the region always have a human ignition source.” Erika told me “They are used in slash-and-burn agriculture, to clear pastures of weeds and also to burn downed timber in newly deforested areas.” This year’s strong El Niño has caused drier conditions than normal making it “easier for agricultural fires to escape the targeted area and sweep through the forests.” Indonesia is facing a similar problem, where forests have been burned to clear space for new oil plantations, in what the Guardian’s George Monbiot  has described as the ‘greatest environmental disaster of the 21st century – so far.’

When I queried why it matters that the forest is burning, Erika was clear what the major issue is – the loss of unique biodiversity. “Every year over 100 new species are found in Amazonian forests. To see all this going up in smoke is a crime against humanity. It is a tragedy.”

“How are these fires likely to affect biodiversity?” I asked.

“The Amazon has not co-evolved with periodic fires…This means that Amazonian forests are not used to these events and…do not cope very well with it. In terms of plant communities, there is a sharp increase in the abundance of pioneer species, while high-wood density climax species disappear….Fires negatively affect…rare bird species, and the habitat specialists, such as the ant-following insectivores and the terrestrial gleaners. Overall, burned forests are significantly less diverse than their unburned counterparts.”

Amazonian forests that have burned repeatedly may eventually come to resemble more open savannahs and contain  very different species to relatively undisturbed old-growth forest.

But it’s not just biodiversity that is affected by these fires, but humans as well. In Indonesia there were evacuations of children by the navy, although some of the children, according to reports, still died from breathing difficulties . In Brazil the fires have “affected many of the local people…who reported a number of respiratory problems, such as dry cough, difficulties in breathing, and sore throats,” according to Erika. “People had to spend days building fire breaks to protect their land, instead of directly working on their crops.” People working on these farms already have a tough life as it is, without having to worry if their source of income will go up in smoke.

So what will happen to these forests in the future? Given time and, vitally, protection they can recover but Erika thinks this is unlikely “These burned forests may never recover. After the fire, several large trees die, creating a number of gaps in the forest canopy, through which more light and wind can reach the forest floor, making it drier and, as a consequence, more vulnerable to further fire events.”

The research Erika and her team are carrying out will help to answer the question of how burned forests recover but it is obvious that degraded forests, such as these, need to be seen as a greater conservation priority. More than 50% of the globe’s forests are degraded in one way or another. We cannot afford to only protect primary forests anymore.

Edit: I got an email from Erika a bit ago after I asked her what the best solution would be. I thought I should include it here:

“Funnily enough there are already quite a few good policies in place. The problem is that none is followed. For example, every year there is a ‘burning calendar’ establishing when farmers can use fire to burn their pastures or their croplands. During the peak of the dry season, the use of fire is forbidden. In 2015, given the extreme drought, some states even extended the prohibitive period. So all quite reasonable and good, right? The problem is that no one follows this rules and there is no law enforcement in place. So people carry business as usual and the forests carry on burning. To put in practice the existing laws would be the best solution.”


If you want to read more about the situation in Brazil take a look at the excellent article Erika has written  for ‘The Conversation.’

There are also a pair of videos that Erika’s team have made documenting the fires that you can see here and here.

Advertisements

Tropical deforestation causes dramatic biotic homogenisation

Although species richness is most ecologists go-to metric to ‘take the temperature’ of an ecosystem, it is not always the most useful. Even when species richness doesn’t change much over time many species may be being added to or lost from a community. Changes in human land use can cause loss of a particular taxonomic or functional groups, which can have important implications for ecosystem processes such as pollination or seed dispersal. This non-random loss of species as a result of human impacts can result in biotic homogenisation – where the communities in different location become more similar to each other. Biotic homogenisation has been seen all over the world in response to drivers like urbanisation, agricultural land-use change, and eutrophication.

However, up until recently, there had been little work on how biotic homogenisation impacted multiple taxonomic groups across landscapes. Work has also been almost entirely carried out at a single spatial scale. Given that taxonomic groups are likely to differ in their response to disturbances and that landscape scale processes may play a critical role in species persistence. Fortunately last week a paper was published by Ricardo (aka Bob) Solar and colleagues in Ecology Letters that attempted to fill these knowledge gaps.

Specifically the paper attempted to determine how much of the change in community composition as a result of changes in tropical forest land-use change were attributable to replacement of species (termed turnover) and loss of species (termed nestedness). Bob and his colleagues did this for birds, dung beetles, plants, orchid bees and ants at 335 sites (!) in 36 different landscapes in 2 regions of Brazil. The sites used were either primary forest experiencing varying degrees of human disturbance, secondary forests, cattle pasture or arable farmland.

In short the paper shows that:

  • Species richness decreases as land-use intensity increases
  • Differences in community composition between deforested sites were much lower than for forested areas
  • Species turnover caused the majority of changes in community composition, but loss of species became more important as the intensity of disturbance increased
Bob_Solar_Fig5
The importance of loss of species (nestedness) in biotic homogenisation increased as intensity of disturbance increased at both (a) local and (b) landscape scales. Taken from Solar et al. 2015.

For me, the most interesting message of the paper the changes in community composition were largely attributable to replacement of species. This suggests that as species are lost following disturbance, colonisation of generalist species initially causes relatively little change in species richness. However, as land-use intensity increases the contribution of species loss to alteration in community composition became more important suggesting that communities in these locations tend to be made up of generalist species that are tolerant to human disturbances.

Conversion of forest to agricultural use led to much greater biotic homogenisation than degradation.
Conversion of forest to agricultural use led to much greater biotic homogenisation than degradation. Photo courtesy of Bob Solar.

Interestingly, the paper also shows that provided that forest cover is maintained there was relatively little biotic homogenisation. So while it is obvious from previous work that the maintenance of undisturbed forests is vital to conserve tropical forest biodiversity, it is also obvious that degraded forest can play an important role in conservation.  This is especially true where few undisturbed forests still exist or degraded forest is widespread such as in SE Asia and Central America.

This work effectively shows that taxonomic homogenisation is occurring at multiple scales as a result of human land-use change. The next step is to see what types of species are being lost/retained. This means looking at the interaction between species traits and the land-use gradient (see more on that here). Previous work has suggested that body size and feeding preferences may play an important role in determining whether bird species can persist in degraded forests. Looking at this will allow us to gain a greater understanding of how biodiversity change may alter ecosystem processes and ultimately the ecosystem services on which we all depend.

Being positive about conservation

Over Christmas I was out walking in the Pennines with family and friends.

I got to talking to one of our old family friends (in that I have known her for a long time, not that she is old – I’d never be that rude) about what I was doing for my PhD.

I can’t quite remember the conversation but it went something like this:

Her: “The natural world is screwed. What kind of world do you think we’ll leave for our children and grand children if thinks keep on like this?”

Me: “I agree. But not everything is terrible. People think that deforestation in the Amazon is unsolvable, but recently deforestation has been going down.” (Note: this was true at the time, it’s just shown a ~30% increase)

Her: “Really? I didn’t know anything about that.”

Me: “Yeah, and the Brazilian government can now monitor deforestation monthly using its own satellites and potentially work out who is deforesting what.”

Her: “Wow. I didn’t know that either. Why don’t conservation people talk about these things more often?”

She had me there.

Why don’t we?

I think it’s fairly easy to understand why: tropical forests are being cleared rapidly, pollinator populations are in decline, as are carnivore populations and apparently populations of long-lived trees, not to mention the crisis in fisheries, the lack of a solid deal on carbon emissions… the list could go on.

However, buried amongst all that conservation has made some practical contributions to help save species and unique ecosystems from obliteration. We need to talk about these more often. If people think that everything is beyond hope – what is the point in doing anything?

Species like the golden tamarin have been brought back from the brink of extinction - so why don't we talk about them? Photo credit: 1000 wishes on Flickr
Species like the golden tamarin have been brought back from the brink of extinction – so why don’t we talk about them? Photo credit: 1000 wishes on Flickr

This is not a new idea. The late, great Navjot Sodhi and colleagues wrote a paper a few years ago identifying conservation successes at small, medium and large scales and others have been banging on about it for even longer. Shamelessly I am going to steal this idea.

So starting from now I will have an occasional series of posts called ‘Positive Conservation’, Or #positiveconservation for those of you on Twitter.

I ran through a series of names for this series #ponservation probably being the least appropriate, though #poncervation would  be a great name for hipster types doing conservation whilst rocking their oversized glasses (subnote – I don’t hate hipsters, I think I might be one).

I’ll keep this series as positive as possible and will write about individual case studies of conservation success, what the problems were and how people found solutions to them. Like upworthy for conservation but less cheesy, hopefully. If there are any examples that you particularly like and I don’t write about – send them my way. Let’s see how this goes.